3.1000 \(\int (a+i a \tan (e+f x))^{3/2} (c-i c \tan (e+f x))^{3/2} \, dx\)

Optimal. Leaf size=113 \[ \frac{a c \tan (e+f x) \sqrt{a+i a \tan (e+f x)} \sqrt{c-i c \tan (e+f x)}}{2 f}-\frac{i a^{3/2} c^{3/2} \tan ^{-1}\left (\frac{\sqrt{c} \sqrt{a+i a \tan (e+f x)}}{\sqrt{a} \sqrt{c-i c \tan (e+f x)}}\right )}{f} \]

[Out]

((-I)*a^(3/2)*c^(3/2)*ArcTan[(Sqrt[c]*Sqrt[a + I*a*Tan[e + f*x]])/(Sqrt[a]*Sqrt[c - I*c*Tan[e + f*x]])])/f + (
a*c*Tan[e + f*x]*Sqrt[a + I*a*Tan[e + f*x]]*Sqrt[c - I*c*Tan[e + f*x]])/(2*f)

________________________________________________________________________________________

Rubi [A]  time = 0.143573, antiderivative size = 113, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 35, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.143, Rules used = {3523, 38, 63, 217, 203} \[ \frac{a c \tan (e+f x) \sqrt{a+i a \tan (e+f x)} \sqrt{c-i c \tan (e+f x)}}{2 f}-\frac{i a^{3/2} c^{3/2} \tan ^{-1}\left (\frac{\sqrt{c} \sqrt{a+i a \tan (e+f x)}}{\sqrt{a} \sqrt{c-i c \tan (e+f x)}}\right )}{f} \]

Antiderivative was successfully verified.

[In]

Int[(a + I*a*Tan[e + f*x])^(3/2)*(c - I*c*Tan[e + f*x])^(3/2),x]

[Out]

((-I)*a^(3/2)*c^(3/2)*ArcTan[(Sqrt[c]*Sqrt[a + I*a*Tan[e + f*x]])/(Sqrt[a]*Sqrt[c - I*c*Tan[e + f*x]])])/f + (
a*c*Tan[e + f*x]*Sqrt[a + I*a*Tan[e + f*x]]*Sqrt[c - I*c*Tan[e + f*x]])/(2*f)

Rule 3523

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist
[(a*c)/f, Subst[Int[(a + b*x)^(m - 1)*(c + d*x)^(n - 1), x], x, Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f,
m, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 + b^2, 0]

Rule 38

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(m_), x_Symbol] :> Simp[(x*(a + b*x)^m*(c + d*x)^m)/(2*m + 1)
, x] + Dist[(2*a*c*m)/(2*m + 1), Int[(a + b*x)^(m - 1)*(c + d*x)^(m - 1), x], x] /; FreeQ[{a, b, c, d}, x] &&
EqQ[b*c + a*d, 0] && IGtQ[m + 1/2, 0]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int (a+i a \tan (e+f x))^{3/2} (c-i c \tan (e+f x))^{3/2} \, dx &=\frac{(a c) \operatorname{Subst}\left (\int \sqrt{a+i a x} \sqrt{c-i c x} \, dx,x,\tan (e+f x)\right )}{f}\\ &=\frac{a c \tan (e+f x) \sqrt{a+i a \tan (e+f x)} \sqrt{c-i c \tan (e+f x)}}{2 f}+\frac{\left (a^2 c^2\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{a+i a x} \sqrt{c-i c x}} \, dx,x,\tan (e+f x)\right )}{2 f}\\ &=\frac{a c \tan (e+f x) \sqrt{a+i a \tan (e+f x)} \sqrt{c-i c \tan (e+f x)}}{2 f}-\frac{\left (i a c^2\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{2 c-\frac{c x^2}{a}}} \, dx,x,\sqrt{a+i a \tan (e+f x)}\right )}{f}\\ &=\frac{a c \tan (e+f x) \sqrt{a+i a \tan (e+f x)} \sqrt{c-i c \tan (e+f x)}}{2 f}-\frac{\left (i a c^2\right ) \operatorname{Subst}\left (\int \frac{1}{1+\frac{c x^2}{a}} \, dx,x,\frac{\sqrt{a+i a \tan (e+f x)}}{\sqrt{c-i c \tan (e+f x)}}\right )}{f}\\ &=-\frac{i a^{3/2} c^{3/2} \tan ^{-1}\left (\frac{\sqrt{c} \sqrt{a+i a \tan (e+f x)}}{\sqrt{a} \sqrt{c-i c \tan (e+f x)}}\right )}{f}+\frac{a c \tan (e+f x) \sqrt{a+i a \tan (e+f x)} \sqrt{c-i c \tan (e+f x)}}{2 f}\\ \end{align*}

Mathematica [A]  time = 3.55258, size = 133, normalized size = 1.18 \[ \frac{a c^2 e^{-2 i e} \left (\cos \left (\frac{3 e}{2}\right )+i \sin \left (\frac{3 e}{2}\right )\right ) \sqrt{a+i a \tan (e+f x)} \left (\cos \left (\frac{e}{2}+f x\right )-i \sin \left (\frac{e}{2}+f x\right )\right ) \left (\tan (e+f x) \sec (e+f x)-2 i \tan ^{-1}\left (e^{i (e+f x)}\right )\right )}{2 \sqrt{2} f \sqrt{\frac{c}{1+e^{2 i (e+f x)}}}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + I*a*Tan[e + f*x])^(3/2)*(c - I*c*Tan[e + f*x])^(3/2),x]

[Out]

(a*c^2*(Cos[(3*e)/2] + I*Sin[(3*e)/2])*(Cos[e/2 + f*x] - I*Sin[e/2 + f*x])*Sqrt[a + I*a*Tan[e + f*x]]*((-2*I)*
ArcTan[E^(I*(e + f*x))] + Sec[e + f*x]*Tan[e + f*x]))/(2*Sqrt[2]*E^((2*I)*e)*Sqrt[c/(1 + E^((2*I)*(e + f*x)))]
*f)

________________________________________________________________________________________

Maple [A]  time = 0.03, size = 128, normalized size = 1.1 \begin{align*} -{\frac{ac}{2\,f}\sqrt{a \left ( 1+i\tan \left ( fx+e \right ) \right ) }\sqrt{-c \left ( -1+i\tan \left ( fx+e \right ) \right ) } \left ( ac\ln \left ({ \left ( ac\tan \left ( fx+e \right ) +\sqrt{ac \left ( 1+ \left ( \tan \left ( fx+e \right ) \right ) ^{2} \right ) }\sqrt{ac} \right ){\frac{1}{\sqrt{ac}}}} \right ) +\tan \left ( fx+e \right ) \sqrt{ac \left ( 1+ \left ( \tan \left ( fx+e \right ) \right ) ^{2} \right ) }\sqrt{ac} \right ){\frac{1}{\sqrt{ac \left ( 1+ \left ( \tan \left ( fx+e \right ) \right ) ^{2} \right ) }}}{\frac{1}{\sqrt{ac}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+I*a*tan(f*x+e))^(3/2)*(c-I*c*tan(f*x+e))^(3/2),x)

[Out]

-1/2/f*(a*(1+I*tan(f*x+e)))^(1/2)*(-c*(-1+I*tan(f*x+e)))^(1/2)*a*c*(a*c*ln((a*c*tan(f*x+e)+(a*c*(1+tan(f*x+e)^
2))^(1/2)*(a*c)^(1/2))/(a*c)^(1/2))+tan(f*x+e)*(a*c*(1+tan(f*x+e)^2))^(1/2)*(a*c)^(1/2))/(a*c*(1+tan(f*x+e)^2)
)^(1/2)/(a*c)^(1/2)

________________________________________________________________________________________

Maxima [B]  time = 1.94856, size = 868, normalized size = 7.68 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(f*x+e))^(3/2)*(c-I*c*tan(f*x+e))^(3/2),x, algorithm="maxima")

[Out]

-(4*a*c*cos(3/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))) - 4*a*c*cos(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f
*x + 2*e))) + 4*I*a*c*sin(3/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))) - 4*I*a*c*sin(1/2*arctan2(sin(2*f*x
 + 2*e), cos(2*f*x + 2*e))) + (2*a*c*cos(4*f*x + 4*e) + 4*a*c*cos(2*f*x + 2*e) + 2*I*a*c*sin(4*f*x + 4*e) + 4*
I*a*c*sin(2*f*x + 2*e) + 2*a*c)*arctan2(cos(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))), sin(1/2*arctan2(
sin(2*f*x + 2*e), cos(2*f*x + 2*e))) + 1) + (2*a*c*cos(4*f*x + 4*e) + 4*a*c*cos(2*f*x + 2*e) + 2*I*a*c*sin(4*f
*x + 4*e) + 4*I*a*c*sin(2*f*x + 2*e) + 2*a*c)*arctan2(cos(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))), -s
in(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))) + 1) - (-I*a*c*cos(4*f*x + 4*e) - 2*I*a*c*cos(2*f*x + 2*e)
 + a*c*sin(4*f*x + 4*e) + 2*a*c*sin(2*f*x + 2*e) - I*a*c)*log(cos(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*
e)))^2 + sin(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e)))^2 + 2*sin(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*
x + 2*e))) + 1) - (I*a*c*cos(4*f*x + 4*e) + 2*I*a*c*cos(2*f*x + 2*e) - a*c*sin(4*f*x + 4*e) - 2*a*c*sin(2*f*x
+ 2*e) + I*a*c)*log(cos(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e)))^2 + sin(1/2*arctan2(sin(2*f*x + 2*e),
 cos(2*f*x + 2*e)))^2 - 2*sin(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))) + 1))*sqrt(a)*sqrt(c)/(f*(-4*I*
cos(4*f*x + 4*e) - 8*I*cos(2*f*x + 2*e) + 4*sin(4*f*x + 4*e) + 8*sin(2*f*x + 2*e) - 4*I))

________________________________________________________________________________________

Fricas [B]  time = 1.58845, size = 925, normalized size = 8.19 \begin{align*} \frac{2 \,{\left (-2 i \, a c e^{\left (2 i \, f x + 2 i \, e\right )} + 2 i \, a c\right )} \sqrt{\frac{a}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} \sqrt{\frac{c}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} e^{\left (i \, f x + i \, e\right )} - \sqrt{\frac{a^{3} c^{3}}{f^{2}}}{\left (f e^{\left (2 i \, f x + 2 i \, e\right )} + f\right )} \log \left (\frac{8 \,{\left (a c e^{\left (2 i \, f x + 2 i \, e\right )} + a c\right )} \sqrt{\frac{a}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} \sqrt{\frac{c}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} e^{\left (i \, f x + i \, e\right )} + \sqrt{\frac{a^{3} c^{3}}{f^{2}}}{\left (4 i \, f e^{\left (2 i \, f x + 2 i \, e\right )} - 4 i \, f\right )}}{a c e^{\left (2 i \, f x + 2 i \, e\right )} + a c}\right ) + \sqrt{\frac{a^{3} c^{3}}{f^{2}}}{\left (f e^{\left (2 i \, f x + 2 i \, e\right )} + f\right )} \log \left (\frac{8 \,{\left (a c e^{\left (2 i \, f x + 2 i \, e\right )} + a c\right )} \sqrt{\frac{a}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} \sqrt{\frac{c}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} e^{\left (i \, f x + i \, e\right )} + \sqrt{\frac{a^{3} c^{3}}{f^{2}}}{\left (-4 i \, f e^{\left (2 i \, f x + 2 i \, e\right )} + 4 i \, f\right )}}{a c e^{\left (2 i \, f x + 2 i \, e\right )} + a c}\right )}{4 \,{\left (f e^{\left (2 i \, f x + 2 i \, e\right )} + f\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(f*x+e))^(3/2)*(c-I*c*tan(f*x+e))^(3/2),x, algorithm="fricas")

[Out]

1/4*(2*(-2*I*a*c*e^(2*I*f*x + 2*I*e) + 2*I*a*c)*sqrt(a/(e^(2*I*f*x + 2*I*e) + 1))*sqrt(c/(e^(2*I*f*x + 2*I*e)
+ 1))*e^(I*f*x + I*e) - sqrt(a^3*c^3/f^2)*(f*e^(2*I*f*x + 2*I*e) + f)*log((8*(a*c*e^(2*I*f*x + 2*I*e) + a*c)*s
qrt(a/(e^(2*I*f*x + 2*I*e) + 1))*sqrt(c/(e^(2*I*f*x + 2*I*e) + 1))*e^(I*f*x + I*e) + sqrt(a^3*c^3/f^2)*(4*I*f*
e^(2*I*f*x + 2*I*e) - 4*I*f))/(a*c*e^(2*I*f*x + 2*I*e) + a*c)) + sqrt(a^3*c^3/f^2)*(f*e^(2*I*f*x + 2*I*e) + f)
*log((8*(a*c*e^(2*I*f*x + 2*I*e) + a*c)*sqrt(a/(e^(2*I*f*x + 2*I*e) + 1))*sqrt(c/(e^(2*I*f*x + 2*I*e) + 1))*e^
(I*f*x + I*e) + sqrt(a^3*c^3/f^2)*(-4*I*f*e^(2*I*f*x + 2*I*e) + 4*I*f))/(a*c*e^(2*I*f*x + 2*I*e) + a*c)))/(f*e
^(2*I*f*x + 2*I*e) + f)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(f*x+e))**(3/2)*(c-I*c*tan(f*x+e))**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (i \, a \tan \left (f x + e\right ) + a\right )}^{\frac{3}{2}}{\left (-i \, c \tan \left (f x + e\right ) + c\right )}^{\frac{3}{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(f*x+e))^(3/2)*(c-I*c*tan(f*x+e))^(3/2),x, algorithm="giac")

[Out]

integrate((I*a*tan(f*x + e) + a)^(3/2)*(-I*c*tan(f*x + e) + c)^(3/2), x)